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Motivation

* Need for speed in evaluating exhaust concepts for noise
— Empirical — Fast; Can’t account for strange nozzle geometries
— RANS - Quick enough? Steady acoustic sources, no resonances
— LES — Slow; Too cumbersome
* How to speed up RANS-based methods?
— Make import/creation of geometry easy = Tie to solid modeling software
— Automate grid generation, refinement - Cartesian methods
— Make acoustic code robust, fast.
« Acoustic analogy codes for RANS typically have two components—
source and propagation (Green function)

— Solving for Green’s function is expensive, requires smooth solutions, different
grids than RANS

— Adding surfaces further complicates Green’s function solutions

« Looking for ‘good enough’ answers for design work—noise is measured
in dB!




Motivation

Heuristic two-component model
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Small-scale source model development

Assumption: ‘Small-scale’ noise contributed by independent sources SS,,
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Small-scale source SS,

*  Both momentum SS,, and enthalpy SS, source terms modeled
(Khavaran 2009)

— Enthalpy proportional to deviation of location temperature ratio Ma =0.9, TsR =2.27
relative to ambient, squared.
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« Take advantage of Greens function at 90° being nominally freespace.

»  Coefficients Ao, Asser Bssmr Bsser Cssm» Csse determined by trial and error
fit to jet noise database at polar angle = 90°

« NASA SHJAR database for simple round nozzle (SMCO000) covers 10° 10° 10*
Freq (Hz)
— 0.5<Ulcs < 1.5,

— unheated < Tg/Tw < 2.7.




Small-scale directivity model

« Spectra anchored at 90° , derive directivity model for polar angle  Ag(¢) = PSD(f*,¢)/PSD(f*, 90°)
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Large-scale source model

« Spatial filter ¥ to select TKE where lengthscales match dominant modes (~jet diameter):

W(Djet) = 10<_ <ln( K’i/fze/tg))2>

« Similar spectral model as small-scale source, different scaling with TKE
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Large-scale directivity model

« Dramatic directivity is hallmark of large-scale source

« Reasonable fit by Gaussian in ¢

DL(¢) =e
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Directivity modified by solid surfaces @/

Shielding/Reflection of source behind planar surface estimated by method of Maekawa (1968)
* Assumes no flow!

» DH s attenuation factor relative to free-space Green’s function.

¢ =90° H,(x.f, =90°) -]




Total Model

« Contribution of each nth cell in CFD RANS solution to far-field noise:

PSD3(x,y,z,f,¢p) =
DS(p) Xn SSn(x,y,2,f) DH,(x,y,2,f, $)
+ DL($) X0 SLy(x,y,2,f) DH, (X, y,2,f, P)

PSD2(x,y,f, ) = jPSDS(x,y,z,f, ¢)dz
PSD1(x, f,¢) = JPSDZ(x,y,f,cp) dy

PSD(f, ) = f PSD1(x, f, ) dx

3-D source density to
observer ¢ at frequency f

Phased array view of source distribution

Axial source distribution

Spectral directivity of far-field noise
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Validation

Single-stream jets of various temperatures

Dual-stream coaxial jets with heat

Single-stream jets from nozzles with enhanced mixing features

Jets in proximity to surfaces (excluding the edge-induced noise).




Simple round jets, single-stream, no plug; heated
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Single-stream round hot jets

 Tanna matrix: 0.5 < Ma < 1.8; unheated < TsR< 2.7
* RANS using Mentor Graphics cartesian mesh method (SolidWorks Flow Simulation)

RANS vs PIV--lipline Source distributions--peak locations Far-field noise spectral directivity
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Bridges, J., and Wernet, M. P., “The NASA Subsonic
Jet Particle Image Velocimetry (PIV) Dataset,”

Podboy, G. G., “Jet-Surface Interaction Test:
Phased Array Noise Source Localization Results,”
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Single-stream, shock-free round hot jets § | @

Absolute error in far-field spectral directivity

Ma = Uje/co,
 mSrc model works better than , , 0.9 118
empirical models over large T e | AT Aamd
range of Ma, TsR where TsR < <10 .
2, Ma<1.2
« Suffers errors in predicting peak
frequency at supersonic 100
conditions TsR=
« Overpredicts far aft angles TS’JC‘/Twl 43
« Transition between small- and )
large-scale (blue dot) worse at
high temperatures. 176
227 |
270

Brown, C. A., and Bridges, J., “Small Hot Jet Acoustic Rig Validation,”
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Single-stream, shock-free round hot jets
Absolute error in far-field spectral directivity

&

. Ma = Uje/co,
« ANOPP/ST2 empirical model has 05 1.18 133 15 1.8
greater errors relative to SHJAR
database.
dPSD (dB)
5
TsR= 0

T jed/ Tee
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Coaxial dual-stream, separate flow, with plug; hot core @
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Dual-stream jets B
Computed flow fields T

» Differences in turbulence of single- and dual-stream jets, plugged nozzles
+ Peak TKE shifts downstream with increasing velocity ratio

Ve/Vb = 1

Ve/Vb =1.2

Ve/Vb =1.9
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Dual-stream jets
Source distributions

Comparison of PSD2 with phased array data for
axisymmetric dual-stream jet with external plug
Similar distributions, except at high frequency
where phased array finds source more tightly
focused around plug

— Need better Green’s function for plug nozzle?

Bridges, J. E., Podboy, G. G., and Brown, C. A., “Testing Installed Propulsion For
Shielded Exhaust Configurations,”

Ve/Vb = 1.2.
$=90°

eV e

% 2000Hz

50

18



Dual-stream jets § @/
Absolute error in far-field spectral directivity .

Tc/T.=3.0
NPRc = 1.3 1.5 1.8 2.1 2.3

« (Cases cover
1.25<Vc/Vb< 2.3
NPRb =

« Generally within =2dB 13
* Underpredicts low freq

* Overpredicts high freq
— Wrong TKE on plug?
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Dual-stream jets = @,
Absolute error in far-field spectral directivity N

Tc/T.=3.0
NEBe. =13 15 1.5 2.1 23

« ANOPP/ST2 empirical
model has comparable
errors relative to NATR
database.

« Underpredicts high freq

Why? TH/T..
=125

dPSD (dB)
5
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Chevron jets, single-stream, no plug
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Simple chevron nozzles
CFD validation
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RANS accurately predicts change in TKE distribution, especially near chevrons

Opalski, A., Wernet, M., and Bridges, J., “Chevron Nozzle Performance Characterization Using Stereoscopic DPIV”
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Simple chevron nozzles
Acoustic validation

» Source distributions for round and
chevron nozzles:

— mSrc picks up change in spatial
distribution of high frequency noise
generated by chevrons

* Far-field noise:

— mSrc does not predict as much high
freq increase/low freq reduction as
experiment.

» Since TKE amplitude and source
Ioc_ajuon seem correct, pOS_SIny . Far-field noise spectral directivity dPSD (dB)
efficiency of TKE-->acoustic energy is (color is error in prediction)
off.

— Chevrons change anisotropy of TKE

“ Ma=0.9, unheated

Phased Array

(ar) asd

LR}

‘Q‘J and Brown, C., “Parametric Testing of Chevrons on Single Flow Hot Jets,”, |



Installed jets, single-stream, no plug
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Jet-Surface Interaction ﬁy
CFD validation

« Check on validity of mSrc’s shielding/reflection model
«  Will not predict scattering of turbulent energy into sound

by trailing edge of plate. h
- SWFS, like other RANS codes, generally predicts TKE =~ € tE >

of jet near plate well, but underpredicts TKE aft of plate -
when jet is on the plate.

xg/D=6, hy/D=0.0 BT T xg/D=6, hg//D=0.5 BT T

<uu>/UP: 0 001 02 003 <au>/U7: 0 001 0@ 003

PIV: Brown, C. A., and Wernet, M. P., “Jet-Surface Interaction Test: Flow Measurement Results”
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Jet-Surface Interaction gy

Acoustic validation \Z
60° 90° 120°
« Difference in far-field noise from Ma=0.9, unheated jet, \ T /
without minus with surface.
« Shielding is overpredicted at highest frequencies, but N ;1';
within 2dB for most frequencies of interest. A Xg >

* Be suspicious of shielding > 5dB!

mSrc -===-=
Expt
S 3 s
Q. Q. Q.
D=50mm 5 E E

Brown, C. A., “Developing an Empirical Model for Jet-Surface Interaction Noise,” 26



Summary

mSrc is robust numerical model to be used with RANS to
predict installed jet noise.

— Can be traced to acoustic analogies, but developed empirically.
— Uses simple models for Green’s function for speed, robustness.
* Assumptions/Limitations

— Axisymmetric sound field
— Shock-free jets

— No scattering of TKE into sound by edges
» Accurate to =2dB for most applications studied. EPNL from Baseline, uninstalled
. Provides intermediate, diagnOStiC results Baseline, installed 040, installed 240, installed

« Works with any RANS code. § I
\

*  When coupled with SolidWorks™ Flow Simulation RANS N\
solver, mSrc can provide jet noise prediction from geometry =
within few hours on laptop computer.

» Used in designing installed nozzle concepts for exploration of
integrated low-noise propulsion systems.
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6
Bridges, J. “Noise measurements of a low-noise top-mounted
propulsion installation for a supersonic airliner”



